ВИКОРИСТАННЯ КАВОВОЇ ГУЩІ У ТЕХНОЛОГІЯХ ФУНКЦІОНАЛЬНИХ ПРОДУКТІВ ХАРЧУВАННЯ ТА ЇЇ ВПЛИВ НА ЗДОРОВ’Я ЛЮДИНИ
DOI:
https://doi.org/10.31548/humanhealth.3.2025.80Ключові слова:
біологічно активні сполуки, терапевтичні ефекти, лікувально-профілактичний вплив, система життєзабезпечення людини, харчова цінністьАнотація
Відпрацьована кавова гуща (Spent coffee grounds – SCG) у всьому світі утворюються щорічно в обсязі близько 6×106 т. На кожний 1 г меленої кави припадає 0,91 г SCG, які містять велику кількість біологічно активних сполук, та мають великий потенціал для широкого застосування в технологіях продуктів функціонального призначення та потенційну користь для здоров'я людини.
Мета дослідження – аналіз та узагальнення інформації про SCG в технологіях продуктів функціонального призначення та вплив на здоров’я людини. Методи дослідження: аналітичні та стандартні загальноприйняті: монографічний, аналіз та синтез, класифікаційний.
SCG є ефективною харчовою добавкою в хлібобулочних виробах, печиві, тортах, мюслі, приправах для барбекю, десертах та у виробництві напоїв.
Серед основних сполук SCG є хлорогенова кислота (CGA) (профілактики хронічних метаболічних захворювань; регулювання артеріального тиску та серцево-судинної системи; підвищення рівня глюкози при порушенні толерантності до глюкози; зниження маси тіла; зменшення накопичення жиру в печінці та зниження рівня ліпідів у крові; зменшення кількості вісцерального жиру; кофеїн (покращення когнитивного здоров'я, покращення результатів при вікових когнітивних порушеннях; покращення пам'яті і когнітивних здібностей; тригонелін (покращення специфічної функції нейронів; поліпшення пам'яті у пацієнтів із хворобою Альцгеймера; уповільнення окислювального стресу і запалення в головному мозку); меланоїдини (антиоксидантна активність; антибактеріальна активність; активація інших генопротекторних механізмів; ферментація кишкових бактерій, активація антиоксидантних шляхів та модуляція популяції кишкових бактерій); кафестол та кахвеол (здатність пригнічувати активність, міграцію та проліферацію ракових клітин).
Таким чином, використання SCG у технологіях харчових продуктів дозволяє виробляти продукти функціонального призначення з певними позитивними терапевтичними ефектами та сприяє покращенню здоров’я людини.
Посилання
Adriana S. Franca and Leandro S. Oliveira. (2022). Potential Uses of Spent Coffee Grounds in the Food Industry. Foods. 11(14): 2064. http://doi: 10.3390/foods11142064.
Angeloni, G.; Guerrini, L.; Masella, P.; Bellumori, M.; Daluiso, S.; Parenti, A.; Innocenti, M. (2019). What kind of coffee do you drink? An investigation on effects of eight different extraction methods. Food Res. Int. 116, 1327–1335. DOI: 10.1016/j.foodres.2018.10.022.
Angeloni, S.; Nzekoue, F.K.; Navarini, L.; Sagratini, G.; Torregiani, E.; Vittori, S.; Caprioli, G. (2020) An analytical method for the simultaneous quantification of 30 bioactive compounds in spent coffee ground by HPLC-MS/MS. J. Mass Spectrom. 55, e4519. DOI: 10.1002/jms.4519.
Al-Dhabi, N.A.; Ponmurugan, K.; Maran Jeganathan, P. (2017). Development and validation of ultrasound-assisted solid-liquid extraction of phenolic compounds from waste spent coffee grounds. Ultrason. Sonochem. 34, 206–213. https://doi.org/10.1016/j.ultsonch.2016.05.005.
Arya, S.S.; Venkatram, R.; More, P.R.; Vijayan, P. (2022) The wastes of coffee bean processing for utilization in food: A review. J. Food Sci. Technol. 59, 429–444. DOI: 10.1007/s13197-021-05032-5.
Barrios C, Fernández-Delgado M, López-Linares JC, García-Cubero MT, Coca M, Lucas S (2022) A techno-economic perspective on a microwave extraction process for efficient protein recovery from agri-food wastes. Ind Crops Prod 186:115166. https://doi. org/ 10. 1016/j. indcr op. 2022. 115166.
Belayneh, A.; Molla, F. (2020). The effect of coffee on pharmacokinetic properties of drugs: A review. Biomed. Res. Int. 7909703. DOI: 10.1155/2020/7909703.
Bekedam, E.K.; Loots, M.J.; Schols, H.A.; Van Boekel, M.A.; Smit, G. (2008) Roasting effects on formation mechanisms of coffee brew melanoidins. J. Agric. Food Chem. 56, 7138–7145. DOI: 10.1021/jf800999a.
Bevilacqua, E.; Cruzat, V.; Singh, I.; Rose’Meyer, R.B.; Panchal, S.K.; Brown, L. (2023). The Potential of Spent Coffee Grounds in Functional Food Development. Nutrients. 15, 994. https://doi.org/10.3390/nu15040994.
Bhandarkar, N.S.; Brown, L.; Panchal, S.K. (2019). Chlorogenic acid attenuates high-carbohydrate, high-fat diet-induced cardiovascular, liver, and metabolic changes in rats. Nutr. Res. 62, 78–88. DOI: 10.1016/j.nutres.2018.11.002.
Bhandarkar, N.S.; Mouatt, P.; Goncalves, P.; Thomas, T.; Brown, L.; Panchal, S.K. (2020). Modulation of gut microbiota by spent coffee grounds attenuates diet-induced metabolic syndrome in rats. FASEB J. 34, 4783–4797. DOI: 10.1096/fj.201902416RR.
Blaak, E.E.; Canfora, E.E.; Theis, S.; Frost, G.; Groen, A.K.; Mithieux, G.; Nauta, A.; Scott, K.; Stahl, B.; van Harsselaar, J.; et al. (2020). Short chain fatty acids in human gut and metabolic health. Benef. Microbes. 11, 411–455. DOI: 10.3920/BM2020.0057.
Bomfim, A.S.; de Oliveira, D.M.;Walling, E.; Babin, A.; Hersant, G.; Vaneeckhaute, C.; Dumont, M.-J.; Rodrigue, D. (2023). Spent coffee grounds characterization and reuse in composting and soil amendment. Waste. 1, 2–20. https://doi.org/10.3390/waste1010002.
Bouhlal, F.; Aqil, Y.; Chamkhi, I.; Belmaghraoui, W.; Labjar, N.; Hajjaji, S.E.; Benabdellah, G.A.; Aurag, J.; Lotfi, E.M.; Mahi, M.E. (2020). GC-MS analysis, phenolic compounds quantification, antioxidant, and antibacterial activities of the hydro-alcoholic extract of spent coffee grounds. J. Biol. Active Prod. Nat. 10, 325–337. https://doi.org/10.3390/cleantechnol3020019.
Brown, L.; Caligiuri, S.P.B.; Brown, D.; Pierce, G.N. (2018). Clinical trials using functional foods provide unique challenges. J. Funct. Foods. 45, 233–238. DOI:10.1016/j.jff.2018.01.024.
Campos-Vega, R.; Arreguín-Campos, A.; Cruz-Medrano, M.A.; Del Castillo Bilbao, M.D. (2020). Spent coffee (Coffea arabica L.) grounds promote satiety and attenuate energy intake: A pilot study. J. Food Biochem. 44, e13204. DOI: 10.1111/jfbc.13204.
Cappelletti, S.; Piacentino, D.; Sani, G.; Aromatario, M. (2015) Caffeine: Cognitive and physical performance enhancer or psychoactive drug? Curr. Neuropharmacol. 13, 71–88. DOI: 10.2174/1570159X13666141210215655.
Castaldo, L.; Lombardi, S.; Gaspari, A.; Rubino, M.; Izzo, L.; Narváez, A.; Ritieni, A.; Grosso, M. (2021). In vitro bioaccessibility and antioxidant activity of polyphenolic compounds from spent coffee ground. Foods. 10(8), 1837; https://doi.org/10.3390/foods10081837.
Chibuike C. Udenigwe & Rotimi E. Aluko. (2012). Food Protein-Derived Bioactive Peptides: Production, Processing, and Potential Health Benefits. Vol. 71, Nr. 1, Journal of Food. doi: 10.1111/j.1750-3841.2011.02455.x.
Chowdhury, A.A.; Gawali, N.B.; Munshi, R.; Juvekar, A.R. (2018). Trigonelline insulates against oxidative stress, proinflammatory cytokines and restores BDNF levels in lipopolysaccharide induced cognitive impairment in adult mice. Metab. Brain Dis. 33, 681–691. DOI: 10.1007/s11011-017-0147-5.
Claassen, L.; Rinderknecht, M.; Porth, T.; Röhnisch, J.; Seren, H.Y.; Scharinger, A.; Gottstein, V.; Noack, D.; Schwarz, S.; Winkler, G.; et al. (2021). Cold brew coffee-Pilot studies on definition, extraction, consumer preference, chemical characterization and microbiological hazards. Foods. 10, 865. https://doi.org/10.3390/foods10040865.
Coelho, J.P.; Robalo, M.P.; Boyadzhieva, S.; Stateva, R.P. (2021). Microwave-assisted extraction of phenolic compounds from spent coffee grounds. Process optimization applying design of experiments. Molecules. 26, 7320. DOI:10.3390/molecules26237320.
Coffee Market Analysis in Ukraine. 2025. (n.d.). Market Analysis. Order Market Analysis at Pro-Consulting. https://pro-consulting.ua/ua/issledovanie-rynka/analiz-rynka-kofe-v-ukraine-2025-god
Coffee Market Report March 2025 ICO, 2024. https://icocoffee.org.
Coffee Consumption by Country 2024. https://worldpopulationreview.com/.
Cruz R, Cardoso MM, Fernandes L, Oliveira M (2012). Espresso coffee residues: a Valuable source of Unextracted Compounds. J Agri Food Chem 60(32):7777–7784. https:// doi. org/ 10. 1021/ jf301 8854.
Daglia, M.; Papetti, A.; Aceti, C.; Sordelli, B.; Gregotti, C.; Gazzani, G. (2008). Isolation of high molecular weight components and contribution to the protective activity of coffee against lipid peroxidation in a rat liver microsome system. J. Agric. Food Chem. 56, 11653–11660. DOI: 10.1021/jf802018c.
De Roos, B.; Meyboom, S.; Kosmeijer-Schuil, T.G.; Katan, M.B. (1998). Absorption and urinary excretion of the coffee diterpenes cafestol and kahweol in healthy ileostomy volunteers. J. Intern. Med. 244, 451–460. DOI: 10.1046/j.1365-2796.1998.00386.x.
Ding, M.; Bhupathiraju, S.N.; Satija, A.; van Dam, R.M.; Hu, F.B. (2014). Long-term coffee consumption and risk of cardiovascular disease: A systematic review and a dose-response meta-analysis of prospective cohort studies. Circulation. 129, 643–659. DOI: 10.1161/CIRCULATIONAHA.113.005925.
Echeverri, D.; Montes, F.R.; Cabrera, M.; Galán, A.; Prieto, A. (2010). Caffeine’s vascular mechanisms of action. Int. J. Vasc. Med. 2010, 834060. DOI: 10.1155/2010/834060.
Esquivel, P. and Jiménez, V.M. (2012). Functional Properties of Coffee and Coffee By-Products. Food Research International, 46, 488-495. http://dx.doi.org/10.1016/j.foodres.2011.05.028/
Farid, M.M.; Yang, X.; Kuboyama, T.; Tohda, C. (2020). Trigonelline recovers memory function in Alzheimer’s disease model mice: Evidence of brain penetration and target molecule. Sci. Rep. 10, 16424. DOI:10.1038/s41598-020-73514-1.
Finotello, C.; Forzato, C.; Gasparini, A.; Mammi, S.; Navarini, L.; Schievano, E. (2017). NMR quantification of 16-O-methylcafestol and kahweol in Coffea canephora var. robusta beans from different geographical origins. Food Cont. 75, 62–69. https://doi.org/10.1016/j.foodcont.2016.12.019.
Franca, A.S.; Oliveira, L.S. (2022). Potential uses of spent coffee grounds in the food industry. Foods 11, 2064. https://doi.org/10.3390/foods11142064.
Fuller, M.; Rao, N.Z. (2017). The effect of time, roasting temperature, and grind size on caffeine and chlorogenic acid concentrations in cold brew coffee. Sci. Rep. 7, 17979. DOI:10.1038/s41598-017-18247-4.
Gaille, B. 18 Food Additives Industry Statistics and Trends. 2018. Available online: https://brandongaille.com/18-foodadditives-industry-statistics-and-trends/#:~:text=If%20all%20possible%20additives%20are%20figured%20into%20the,their%
Garg, R.C. Chapter 44—Fenugreek: Multiple Health Benefits. In Nutraceuticals; Gupta, R.C., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 599–617.
Gaston, S. 12 Delicious Food Recipes with Coffee Grouds in Them. 2023. Available online: https://www.roastycoffee.com/recipes-with-ground-coffee/ (accessed on 26 December 2024).
Gómez-Ruiz, J.Á.; Ames, J.M.; Leake, D.S. (2008). Antioxidant activity and protective effects of green and dark coffee components against human low density lipoprotein oxidation. Eur. Food Res. Technol. 227, 1017–1024. DOI:10.1007/s00217-007-0815-5.
Gunning, Y.; Defernez, M.; Watson, A.D.; Beadman, N.; Colquhoun, I.J.; Le Gall, G.; Philo, M.; Garwood, H.; Williamson, D.; Davis, A.P.; et al. 1(2018). 6-O-methylcafestol is present in ground roast Arabica coffees: Implications for authenticity testing. Food Chem. 248, 52–60. https://doi.org/10.1016/j.foodchem.2017.12.034.
González de Cosío-Barrón Ana Cecilia, Angélica María Hernández-Arriaga, Rocio Campos-Vega. (2020). Spent coffee (Coffea arabica L.) grounds positively modulate indicators of colonic microbial activity. Innovative Food Science & Emerging Technologies. Volume 60, 102286. https://doi.org/10.1016/j.ifset.2019.102286.
Hamadi, S.A. (2012). Effect of trigonelline and ethanol extract of Iraqi Fenugreek seeds on oxidative stress in alloxan diabetic rabbits. J. Assoc. Arab Univ. Basic Appl. Sci. 12, 23–26. https://doi.org/10.1016/j.jaubas.2012.02.003.
Heppner, F.L.; Ransohoff, R.M.; Becher, B. (2015). Immune attack: The role of inflammation in Alzheimer disease. Nat. Rev. Neurosci. 16, 358–372. DOI: 10.1038/nrn3880.
Hu, G.L.; Wang, X.; Zhang, L.; Qiu, M.H. (2019). The sources and mechanisms of bioactive ingredients in coffee. Food Funct. 10, 3113–3126. doi: 10.1039/c9fo00288j
Iriondo-DeHond, A.; Rodríguez Casas, A.; Del Castillo, M.D. (2021). Interest of coffee melanoidins as sustainable healthier food ingredients. Front. Nutr. 8, 730343. https://doi.org/10.3389/fnut.2021.730343.
Iwamoto, H.; Izumi, K.; Natsagdorj, A.; Naito, R.; Makino, T.; Kadomoto, S.; Hiratsuka, K.; Shigehara, K.; Kadono, Y.; Narimoto, K.; et al. (2019). Coffee diterpenes kahweol acetate and cafestol synergistically inhibit the proliferation and migration of prostate cancer cells. Prostate. 79, 468–479. DOI: 10.1002/pros.23753.
Jaquet, M.; Rochat, I.; Moulin, J.; Cavin, C.; Bibiloni, R. (2009). Impact of coffee consumption on the gut microbiota: A human volunteer study. Int. J. Food Microbiol. 130, 117–121. DOI: 10.1016/j.ijfoodmicro.2009.01.011.
Jin Cho, E.; Gyo Lee, Y.; Song, Y.; Nguyen, D.-T.; Bae, H.-J. (2022). An integrated process for conversion of spent coffee grounds into value-added materials. Bioresour. Technol. 346, 126618. DOI: 10.1016/j.biortech.2021.126618.
Johnston, K.L.; Clifford, M.N.; Morgan, L.M. (2003). Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: Glycemic effects of chlorogenic acid and caffeine. Am. J. Clin. Nutr. 78, 728–733. DOI: 10.1093/ajcn/78.4.728.
Klingel, T.; Kremer, J.I.; Gottstein, V.; Rajcic de Rezende, T.; Schwarz, S.; Lachenmeier, D.W. (2020). A review of coffee by-products including leaf, flower, cherry, husk, silver skin, and spent grounds as novel foods within the European Union. Foods. 9, 665. https://doi.org/10.3390/foods9050665.
Kong, L.; Xu, M.; Qiu, Y.; Liao, M.; Zhang, Q.; Yang, L.; Zheng, G. (2021). Chlorogenic acid and caffeine combination attenuates adipogenesis by regulating fat metabolism and inhibiting adipocyte differentiation in 3T3-L1 cells. J. Food Biochem. 45, e13795. DOI: 10.1111/jfbc.13795.
Kozuma, K.; Tsuchiya, S.; Kohori, J.; Hase, T.; Tokimitsu, I. (2005). Antihypertensive effect of green coffee bean extract on mildly hypertensive subjects. Hypertens. Res. 28, 711–718. DOI: 10.1291/hypres.28.711.
Lara-Guzmán, O.J.; Álvarez, R.; Muñoz-Durango, K. (2021). Changes in the plasma lipidome of healthy subjects after coffee consumption reveal potential cardiovascular benefits: A randomized controlled trial. Free Radic. Biol. Med. 176, 345–355. DOI: 10.1016/j.freeradbiomed.2021.10.012.
Leow, Y.; Yew, P.Y.M.; Chee, P.L.; Loh, X.J.; Kai, D. (2021). Recycling of spent coffee grounds for useful extracts and green composites. RSC Adv. 11, 2682–2692. DOI:10.1039/D0RA09379C.
López-Barrera, D.M.; Vázquez-Sánchez, K.; Loarca-Piña, M.G.; Campos-Vega, R. (2016). Spent coffee grounds, an innovative source of colonic fermentable compounds, inhibit inflammatory mediators in vitro. Food Chem. 212, 282–290. DOI: 10.1016/j.foodchem.2016.05.175.
Liu, L.; Du, X.; Zhang, Z.; Zhou, J. (2018). Trigonelline inhibits caspase 3 to protect cells apoptosis in streptozotocin-induced type 1 diabetic mice. Eur. J. Pharmacol. 836, 115–121. DOI: 10.1016/j.ejphar.2018.08.025.
Makowska, J.; Szczesny, D.; Lichucka, A.; Giełdo´ n, A.; Chmurzy´ nski, L.; Kaliszan, R. (2014). Preliminary studies on trigonelline as potential anti-Alzheimer disease agent: Determination by hydrophilic interaction liquid chromatography and modeling of interactions with - amyloid. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 968, 101–104. DOI: 10.1016/j.jchromb.2013.12.001.
Martinez-Saez, N.; García, A.T.; Pérez, I.D.; Rebollo-Hernanz, M.; Mesías, M.; Morales, F.J.; Martín-Cabrejas, M.A.; del Castillo, M.D. (2017). Use of spent coffee grounds as food ingredient in bakery products. Food Chem. 216, 114–122. DOI: 10.1016/j.foodchem.2016.07.173.
McCarty, M.F. (2005). A chlorogenic acid-induced increase in GLP-1 production may mediate the impact of heavy coffee consumption on diabetes risk. Med. Hypotheses. 64, 848–853. DOI: 10.1016/j.mehy.2004.03.037.
Mellbye, F.B.; Jeppesen, P.B.; Hermansen, K.; Gregersen, S. (2015). Cafestol, a bioactive substance in coffee, stimulates insulin secretion and increases glucose uptake in muscle cells: Studies in vitro. J. Nat. Prod. 78, 2447–2451. DOI: 10.1021/acs.jnatprod.5b00481.
Mills, C.E.; Tzounis, X.; Oruna-Concha, M.J.; Mottram, D.S.; Gibson, G.R.; Spencer, J.P. (2015). In vitro colonic metabolism of coffee and chlorogenic acid results in selective changes in human faecal microbiota growth. Br. J. Nutr. 113, 1220–1227. DOI: 10.1017/S0007114514003948.
Mohamadi, N.; Sharififar, F.; Pournamdari, M.; Ansari, M. (2018). A review on biosynthesis, analytical techniques, and pharmacological activities of trigonelline as a plant alkaloid. J. Diet. Suppl. 15, 207–222. DOI: 10.1080/19390211.2017.1329244.
Morales, F.J.; Somoza, V.; Fogliano, V. Physiological relevance of dietary melanoidins. Amino Acids 2012, 42, 1097–1109. DOI: 10.1007/s00726-010-0774-1.
Moreira, A.S.; Nunes, F.M.; Domingues, M.R.; Coimbra, M.A. (2012). Coffee melanoidins: Structures, mechanisms of formation and potential health impacts. Food Funct. 3, 903–915. DOI: 10.1039/c2fo30048f
Munoz, D.G.; Fujioka, S. (2018). Caffeine and Parkinson disease: A possible diagnostic and pathogenic breakthrough. Neurology. 90, 205–206. DOI: 10.1212/WNL.0000000000004898.
Nakayama, T.; Oishi, K. (2013). Influence of coffee (Coffea arabica) and galacto-oligosaccharide consumption on intestinal microbiota and the host responses. FEMS Microbiol. Lett. 343, 161–168. DOI: 10.1111/1574-6968.12142.
Nan Zhao, Zhongyang Liu, Ting Yu, Fujie Yan. (2024). Spent coffee grounds: Present and future of environmentally friendly applications on industries-A review. Trends in Food Science & Technology. Volume 143, 104312. https://doi.org/10.1016/j.tifs.2023.104312.
Narita, Y.; Iwai, K.; Fukunaga, T.; Nakagiri, O. (2012). Inhibitory activity of chlorogenic acids in decaffeinated green coffee beans against porcine pancreas lipase and effect of a decaffeinated green coffee bean extract on an emulsion of olive oil. Biosci. Biotechnol. Biochem. 76, 2329–2331. DOI: 10.1271/bbb.120518.
Nehlig, A. Salazar, N.; Ruiz-Saavedra, S.; Gómez-Martín, M.; de Los Reyes-Gavilán, C.G.; Gueimonde, M. (2020). Long-term coffee consumption is associated with fecal microbial composition in humans. Nutrients. 12, 1287. DOI: 10.3390/nu12051287.
Nehlig, A. (2022). Effects of coffee on the gastro-intestinal tract: A narrative review and literature update. Nutrients. 14, 399. DOI: 10.3390/nu14020399.
Oestreich-Janzen, S. 3.25—Chemistry of Coffee. In Comprehensive Natural Products II; Liu, H.-W., Mander, L., Eds.; Elsevier: Oxford, UK, 2010; pp. 1085–1117.
Okubo, Y.; Motohashi, O.; Nakayama, N.; Nishimura, K.; Kasajima, R.; Miyagi, Y.; Shiozawa, M.; Yoshioka, E.; Suzuki, M.; Washimi, K.; et al. The clinicopathological significance of angiogenesis in hindgut neuroendocrine tumors obtained via an endoscopic procedure. Diagn. Pathol. 2016, 11, 128. doi: 10.1186/s13000-016-0580-5.
Okur, I.; Soyler, B.; Sezer, P.; Oztop, M.H.; Alpas, H. (2021). Improving the recovery of phenolic compounds from spent coffee grounds (SCG) by environmentally friendly extraction techniques. Molecules. 26, 613. https://doi.org/10.3390/molecules26030613.
Olechno, E.; Pu´scion-Jakubik, A.; Zujko, M.E.; Socha, (2021). K. Influence of various factors on caffeine content in coffee brews. Foods. 10, 1208. DOI: 10.3390/foods10061208.
Oliveira Batista, J.; Car Cordeiro, C.; Klososki, S.J.; Mongruel Eleutério Dos Santos, C.; Leão, G.M.C.; Pimentel, T.C.; Rosset, M. (2022). Spent coffee grounds improve the nutritional value and technological properties of gluten-free cookies. J. Culin. Sci. Technol. DOI:10.1080/15428052.2022.2026266.
Oseguera-Castro, K.Y.; Madrid, J.A.; Martínez Madrid, M.J.; García, O.P.; Del Castillo, M.D.; Campos-Vega, R. (2019). Antioxidant dietary fiber isolated from spent coffee (Coffea arabica L.) grounds improves chronotype and circadian locomotor activity in young adults. Food Funct. 10, 4546–4556. DOI https://doi.org/10.1039/C9FO01021A.
Pérez-Nájera, V.C.; Gutiérrez-Uribe, J.A.; Antunes-Ricardo, M.; Hidalgo-Figueroa, S.; Del-Toro-Sánchez, C.L.; Salazar-Olivo, L.A.; Lugo-Cervantes, E. (2018). Smilax aristolochiifolia root extract and its compounds chlorogenic acid and astilbin inhibit the activity of -amylase and -glucosidase enzymes. Evid. Based Complement. Alternat. Med. 6247306. DOI: 10.1155/2018/6247306.
Pérez-Burillo, S.; Pastoriza, S.; Fernández-Arteaga, A.; Luzón, G.; Jiménez-Hernández, N.; D’Auria, G.; Francino, M.P.; Rufián-Henares, J.Á. (2019). Spent coffee grounds extract, rich in mannooligosaccharides, promotes a healthier gut microbial community in a dose-dependent manner. J. Agric. Food Chem. 67, 2500–2509. DOI: 10.1021/acs.jafc.8b06604.
Pérez-Burillo, S.; Rajakaruna, S.; Pastoriza, S.; Paliy, O.; Ángel Rufián-Henares, (2020). J. Bioactivity of food melanoidins is mediated by gut microbiota. Food Chem. 316, 126309. DOI: 10.1016/j.foodchem.2020.126309.
Pimpley, V.; Patil, S.; Srinivasan, K.; Desai, N.; Murthy, P.S. (2020). The chemistry of chlorogenic acid from green coffee and its role in attenuation of obesity and diabetes. Prep. Biochem. Biotechnol. 50, 969–978. DOI: 10.1080/10826068.2020.1786699.
Postuma, R.B.; Anang, J.; Pelletier, A.; Joseph, L.; Moscovich, M.; Grimes, D.; Furtado, S.; Munhoz, R.P.; Appel-Cresswell, S.; Moro, A.; et al. (2017). Caffeine as symptomatic treatment for Parkinson disease (Café-PD): A randomized trial. Neurology. 89, 1795–1803. DOI: 10.1212/WNL.0000000000004568.
Pourfarzad, A.; Mahdavian-Mehr, H.; Sedaghat, N. (2013). Coffee silverskin as a source of dietary fiber in bread-making: Optimization of chemical treatment using response surface methodology. LWT Food Sci. Technol. 50, 599–606. https://doi.org/10.1016/j.lwt.2012.08.001.
Pushpa Srinivas Murthy, Madhava Naidu. Sustainable management of coffee industry by-products and value addition—A review. (2012) Resources Conservation and Recycling 66:45–58. https://doi:10.1016/j.resconrec.2012.06.005.
20foods%20be%20free%20of%20any%20artificial%20additives (accessed on 26 January 2024).
Ramón-Gonçalves, M.; Gómez-Mejía, E.; Rosales-Conrado, N.; León-González, M.E.; Madrid, Y. (2019). Extraction, identification and quantification of polyphenols from spent coffee grounds by chromatographic methods and chemometric analyses. Waste Manag. 96, 15–24. doi.org/10.1016/j.wasman.2019.07.009.
Reichardt, N.; Gniechwitz, D.; Steinhart, H.; Bunzel, M.; Blaut, M. (2009). Characterization of high molecular weight coffee fractions and their fermentation by human intestinal microbiota. Mol. Nutr. Food Res. 53, 287–299. DOI: 10.1002/mnfr.200700509.
Ren, X.; Chen, J.F. (2020). Caffeine and Parkinson’s disease: Multiple benefits and emerging mechanisms. Front. Neurosci. 14, 602697. DOI: 10.3389/fnins.2020.602697.
Ren, Y.; Wang, C.; Xu, J.; Wang, S. (2019). Cafestol and kahweol: A review on their bioactivities and pharmacological properties. Int. J. Mol. Sci. 20, 4238. doi: 10.3390/ijms20174238.
Rocio Campos-Vega, Guadalupe Loarca-Piña, Haydé A. Vergara-Castañeda, B. Dave Oomah. (2015). Spent coffee grounds: A review on current research and future prospects Trends in Food Science & Technology. Volume 45, Issue 1, Pages 24-36. https://doi.org/10.1016/j.tifs.2015.04.012.
Rojas-González, A.; Figueroa-Hernández, C.Y.; González-Rios, O.; Suárez-Quiroz, M.L.; González-Amaro, R.M.; Hernández-Estrada, Z.J.; Rayas-Duarte, P. (2022). Coffee chlorogenic acids incorporation for bioactivity enhancement of foods: A review. Molecules. 27, 3400. DOI: 10.3390/molecules27113400.
Roshan, H.; Nikpayam, O.; Sedaghat, M.; Sohrab, G. (2018). Effects of green coffee extract supplementation on anthropometric indices, glycemic control, blood pressure, lipid profile, insulin resistance and appetite in patients with the metabolic syndrome: A randomized clinical trial. Br. J. Nutr. 119, 250–258. DOI: 10.1017/S0007114517003439.
Rufián-Henares, J.A.; de la Cueva, S.P. (2009). Antimicrobial activity of coffee melanoidins—A study of their metal-chelating properties. J. Agric. Food Chem. 57, 432–438. DOI: 10.1021/jf8027842.
Saimaiti, A.; Zhou, D.-D.; Li, J.; Xiong, R.-G.; Gan, R.-Y.; Huang, S.-Y.; Shang, A.; Zhao, C.-N.; Li, H.-Y.; Li, H.-B. (2023). Dietary sources, health benefits, and risks of caffeine. Crit. Rev. Food Sci. Nutr. 63(29):9648-9666. DOI: 10.1080/10408398.2022.2074362.
Sauer, T.; Raithel, M.; Kressel, J.; Münch, G.; Pischetsrieder, M. (2013). Activation of the transcription factor Nrf2 in macrophages, Caco-2 cells and intact human gut tissue by Maillard reaction products and coffee. Amino Acids. 44, 1427–1439. DOI: 10.1007/s00726-012-1222-1.
Schouten, M.A.; Tappi, S.; Romani, S. (2020). Acrylamide in coffee: Formation and possible mitigation strategies—A review. Crit. Rev. Food Sci. Nutr. 60, 3807–3821. DOI: 10.1080/10408398.2019.1708264.
Sharma, K.; Fallon, S.J.; Davis, T.; Ankrett, S.; Munro, G.; Christopher, G.; Coulthard, E. (2022). Caffeine and attentional control: Improved and impaired performance in healthy older adults and Parkinson’s disease according to task demands. Psychopharmacology. 239, 605–619. DOI: 10.1007/s00213-021-06054-9.
Sherman, S.M.; Buckley, T.P.; Baena, E.; Ryan, L. (2016). Caffeine enhances memory performance in young adults during their non-optimal time of day. Front. Psychol. 7, 1764. doi: 10.3389/fpsyg.2016.01764.
Socała, K.; Szopa, A.; Serefko, A.; Poleszak, E.; Wla´z, (2020). P. Neuroprotective effects of coffee bioactive compounds: A review. Int. J. Mol. Sci. 2020, 22, 107. DOI: 10.3390/ijms22010107.
Suzuki, A.; Nomura, T.; Jokura, H.; Kitamura, N.; Saiki, A.; Fujii, A. (2019). Chlorogenic acid-enriched green coffee bean extract affects arterial stiffness assessed by the cardio-ankle vascular index in healthy men: A pilot study. Int. J. Food Sci. Nutr. 70, 901–908. DOI: 10.1080/09637486.2019.1585763.
Tajik, N.; Tajik, M.; Mack, I.; Enck, P. (2017). The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: A comprehensive review of the literature. Eur. J. Nutr. 56, 2215–2244. DOI: 10.1007/s00394-017-1379-1.
Tohda, C.; Nakamura, N.; Komatsu, K.; Hattori, M. (1999). Trigonelline-induced neurite outgrowth in human neuroblastoma SK-N-SH cells. Biol. Pharm. Bull. 22, 679–682. DOI: 10.1248/bpb.22.679.
Uyory Cho (2025). Valorization of spent coffee grounds and their applications in food science. Current Research in Food Science 10(3):101010. DOI:10.1016/j.crfs.2025.101010.
Valerіі O. Sukmanov, Oleksii M. Komar, Oleksandr V. Sukmanov, Tetiana I. Yudina. (2024). The potential of using spent coffee grounds in the technologies of functional food products. Review. Journal of Chemistry and Technologies. 32(3), 605-648.
Wan, C.W.; Wong, C.N.; Pin, W.K.; Wong, M.H.; Kwok, C.Y.; Chan, R.Y.; Yu, P.H.; Chan, S.W. (2013). Chlorogenic acid exhibits cholesterol lowering and fatty liver attenuating properties by up-regulating the gene expression of PPAR- in hypercholesterolemic rats induced with a high-cholesterol diet. Phytother. Res. 27, 545–551. DOI: 10.1002/ptr.4751.
van Dam, R.M., Hu, F.B., Willett, W.C. (2020). Coffee, caffeine, and health. N. Engl. J. Med. 383, 369–378. DOI: 10.1056/NEJMra1816604.
Wang, H.-Y.; Qian, H.; Yao, W.-R. (2011). Melanoidins produced by the Maillard reaction: Structure and biological activity. Food Chem. 128, 573–584. DOI: 10.1016/j.foodchem.2011.03.075.
Wang, X.; Wang, Y.; Hu, G.; Hong, D.; Guo, T.; Li, J.; Li, Z.; Qiu, (2022). M. Review on factors affecting coffee volatiles: From seed to cup. J. Sci. Food Agric. 102, 1341–1352. doi:10.1002/jsfa.11647.
Walters, E.R.; Lesk, V.E. (2015). Time of day and caffeine influence some neuropsychological tests in the elderly. Psychol. Assess. 27, 161–168. DOI: 10.1037/a0038213.
Watanabe, T.; Arai, Y.; Mitsui, Y.; Kusaura, T.; Okawa, W.; Kajihara, Y.; Saito, I. (2006). The blood pressure-lowering effect and safety of chlorogenic acid from green coffee bean extract in essential hypertension. Clin. Exp. Hypertens. 28, 439–449. DOI: 10.1080/10641960600798655.
Zhong, Y.; Ding, Y.; Li, L.; Ge, M.; Ban, G.; Yang, H.; Dai, J.; Zhang, L. (2020). Effects and mechanism of chlorogenic acid on weight loss. Curr. Pharm. Biotechnol. 21, 1099–1106. DOI: 10.2174/1389201021666200318124922.
Zuñiga, L.Y.; Aceves-de la Mora, M.C.A.; González-Ortiz, M.; Ramos-Núñez, J.L.; Martínez-Abundis, E. (2018). Effect of chlorogenic acid administration on glycemic control, insulin secretion, and insulin sensitivity in patients with impaired glucose tolerance. J. Med. Food. 21, 469–473. DOI: 10.1089/jmf.2017.0110.
Zulli, A.; Smith, R.M.; Kubatka, P.; Novak, J.; Uehara, Y.; Loftus, H.; Qaradakhi, T.; Pohanka, M.; Kobyliak, N.; Zagatina, A.; et al. (2016). Caffeine and cardiovascular diseases: Critical review of current research. Eur. J. Nutr. 55, 1331–1343. DOI: 10.1007/s00394-016-1179-z.
Завантаження
Опубліковано
Номер
Розділ
Ліцензія
Авторське право (c) 2025 Здоров'я людини і нації

TЦя робота ліцензується відповідно до ліцензії Creative Commons Attribution-ShareAlike 4.0 International License.
Усі матеріали розповсюджуються згідно з умовами міжнародної публічної ліцензії Creative Commons Attribution 4.0 International Public License, що дозволяє іншим поширювати статтю з визнанням авторства та першої публікації в цьому журналі.